Dynamics and Control of Quasirational Systems
نویسنده
چکیده
where P,(s), P2(s) and Q(s) are polynomials, are called quasirational distributed systems (QRDS). They are encountered in processes modeled by hyperbolic partial differential equations. QRDS can have an infinity of right half-plane zeros which causes large phase lags and can result in poor performance of the closed-loop system with PID controllers. Theory on the asymptotic location of zeros of quasipolynomials is used to predict the nonminimum phase characteristics of QRDS and formulas are presented for factoring QRDS models into minimum and nonminimum phase elements. A generalized Smith predictor controller design procedure for QRDS, based on this factorization, is derived. It uses pole placement to obtain a controller parameterization that introduces free poles which are selected to satisfy robustness specifications. The use of pole placement allows for the design of robust control systems in a transparent manner. Controller selection is generally better, simpler and more direct with this procedure than searching for optimal PID controller settings. S. Ramanathan :R. L. Curl C. Kravaris Department of Chemical Engineering University of Michigan Ann Arbo,r, MI 48109
منابع مشابه
Definition of General Operator Space and The s-gap Metric for Measuring Robust Stability of Control Systems with Nonlinear Dynamics
In the recent decades, metrics have been introduced as mathematical tools to determine the robust stability of the closed loop control systems. However, the metrics drawback is their limited applications in the closed loop control systems with nonlinear dynamics. As a solution in the literature, applying the metric theories to the linearized models is suggested. In this paper, we show that usin...
متن کاملطراحی سیستم کنترل ABS با در نظر گرفتن کنترل حرکت کناری به روش ترکیبی PID و SMC
Control Systems such as Anti Lock Brake Systems (ABS) and Traction Control Systems (TCS) are vastly used in most vehicles as to enhance the safety of the systems. These systems have many virtues on controlling the dynamics of vehicles, but they only control the longitudinal dynamics of the vehicle directly and the lateral dynamics of vehicle is not controlled because they do not receive any fee...
متن کاملOptimal adaptive leader-follower consensus of linear multi-agent systems: Known and unknown dynamics
In this paper, the optimal adaptive leader-follower consensus of linear continuous time multi-agent systems is considered. The error dynamics of each player depends on its neighbors’ information. Detailed analysis of online optimal leader-follower consensus under known and unknown dynamics is presented. The introduced reinforcement learning-based algorithms learn online the approximate solution...
متن کاملOutput Consensus Control of Nonlinear Non-minimum Phase Multi-agent Systems Using Output Redefinition Method
This paper concerns the problem of output consensus in nonlinear non-minimum phase systems. The main contribution of the paper is to guarantee achieving consensus in the presence of unstable zero dynamics. To achieve this goal, an output redefinition method is proposed. The new outputs of agents are functions of original outputs and internal states and defined such that the dynamics of agents a...
متن کاملDynamics and Motion Control of Wheeled Robotic Systems
Mobile robotic systems, which include a mobile platform with one or more manipulators, mounted at specific locations on the mobile base, are of great interest in a number of applications. In this paper, after thorough kinematic studies on the platform and manipulator motions, a systematic methodology will be presented to obtain the dynamic equations for such systems without violating the base n...
متن کامل